Match and Manage your Data on Cloud

We left the last blog with two questions.

A few weeks back I wrote on IBM Bluemix Data Connect. If you missed it, then watch this video on how you can put data to work with IBM Bluemix Data Connect.

Now, Business Analysts will be able to leverage Entity Matching technology using Data Connect. The Match and Manage (BETA) operation on Data Connect identifies possible matches and relationships (in plethora of data sets, including master data and non-master data sets) to create a unified view of your data. It also provides a visualization of the relationships between entities in the unified data set.

For example, you have two sets of data : One containing customer profile information and the other containing a list of prospects. A Business Analyst can now use intuitive UI to do the Match and Manage operation to match these two data sets and provide insights to questions such as:

  •  Are there duplicates in the prospect list?
  • How many of the prospects are already existing customers?
  • Are there non-obvious relationships among prospects and customers that can be explored?
  • Are there other sources of information within that could provide better insights if brought together?

The two data set are matched using Cognitive capabilities which allows the MDM– matching technology to be auto-configured and tuned to intelligently match across different data sets:

dataconnect

Business Analyst can understand the de-duplicated datasets by navigating through a relationship graph of the data to understand how the entities are related across the entire dataset. Now they can discover new non-obvious relationships within the data that were previously undiscoverable. The following generated canvas enables them to interactively explore relationships between entities.

dataconnect1

In the above example it was illustrated as how clients can now easily understand the data they hold within their MDM repositories and how now they can match their MDM data with other data sources not included within the MDM system. This simplifies the Analytical MDM experience where MDM technologies are accessible to everyone without the need to wait for Data Engineers to transform the data into a format that can be matched and rely on MDM Ninja’s to configure matching algorithms.

Summary:

IBM Bluemix Data Connect provides a seamless integrated self-service experience for data preparation. With addition of entity analytics capability, business users are empowered to gain insight from data that wasn’t previously available to them. Now organizations can extract further value from their MDM data by ensuring it is used across the organization to provide accurate analytics. Entity analytics within Data Connect is now available in beta. Go ahead and experience the next evolution of MDM.

The 4 Personas for Data Analytics

Due to new modernization strategies, data analytics is architected from  top down or through the lens of the consumers of the data. In this blog, I will describe the four roles that are integral to the data lifecycle. These are the personas who interact with data while uncovering and deploying insights as they explore this organizational data.

Citizen analysts/knowledge workers

A knowledge worker is primarily a subject-matter expert (SME) in a specific area of business—for example, a business analyst focused on risk or fraud, a marketing analyst aiming to build out new offers or someone who works to drive efficiencies into the supply chain. These users do not know where or how data is stored, or how to build an ETL flow or a machine learning algorithm. They simply want to access information on demand, driving analysis from their base of expertise, and create visualizations. They are the users of offerings like the Watson Analytics.

Data scientists

Data scientists can do a more sophisticated analysis, find a root cause to a problem, and develop a solution based on an insight that he discovers. They can use SPSS, SAS, etc or open source tools with built-in data shaping and point-and-click machine learning to manipulate large amount of data.

Data engineers

They focus enable data integrations, connections (plumbing) and data quality. They do the underlying enablement that a data scientist and citizen analyst depend on. They typically depend on solutions like DataWorks Forge to access multiple data source and to transform them within a fully managed service.

Application developers

Application developers are responsible for making analytics algorithms actionable within a business process, generally supported by a production system. Beginning with the analytics algorithms built by citizen analysts or data scientists, they work with the final data model representation created by data engineers, building an application that ties into the overall business process. They use something like Bluemix development platform and APIs for the individual data and analytics services.

Putting it all together

Image a scenario where a Citizen analyst notices (from a dashboard) that retail sales are down for the quarter. She pulls up Watson Analytics and uses it to discover that the underlying problem is specific to a category of goods and services in store in a specific region. But she needs more help to find the exact cause and a remedy.

She engages her data scientists and engineer. They discuss the need to pull in more data than just the transactional data the business analyst already has access to, specifically weather, social, and IoT data from the stores. The data engineer helps create the necessary access – the data scientists can then form and test various hypothesis using different analytic models.

Once the data scientist determines the root cause, he then shares the model with the developer who can then leverage it to improve the company’s mobile apps and websites to be more responsive in real-time to address the issue. The citizen analyst also shares the insight with the marketing department so they can take corrective action.

screen-shot-2016-12-05-at-1-33-18-pm

DataStage now available on Cloud

For data integration projects, DataStage has been the work horse for many years. It is used by Data Engineers to extract data from many different sources, transform and combine the data, and then populate them for applications and end users. DataStage has many distinct advantages over other popular ETL tools.

ETL on CloudUntil recently, these capabilities were only available with the on-premises offering. Now DataStage is available on the Cloud as a hosted cloud offering. Customers can take advantage of the full capabilities of DataStage and without the burden and time consumption of standing up the infrastructure and installing the software themselves. Customers can quickly deploy a DataStage environment (from ordering to provisioning it on the cloud) and be up and running in a day or less. There is no up-front capital expenditure as customers only pay a monthly subscription based on the capacity they purchase. Licensing is also greatly simplified.

Using DatasStage on Cloud, existing DataStage customers can start new projects quickly. Since it is hosted in the IBM cloud, the machine and operating system are managed by IBM. The customer will not have to spend time to either increase the current environment or create a new one. In other words, Cloud elasticity makes them ready to scale and handle any workload. DataStage ETL job developers can immediately be productive and the data integration activities can span both on-premises and cloud data if necessary, as the DataStage jobs can be exported from the cloud and brought back to an on-premises DataStage environment.

datastage-on-cloud2As an example; A customer has data sources such as Teradata, DB2, etc. in their data center as well as SalesForce, MongoDB and other data residing in the Cloud. They need access to their existing data sources and their cloud data sources for a new customer retention project . This project requires some sophisticated data integration to bring it all together but they don’t have the IT resources or budget to stand up a new data integration environment in their own data center for this project. So, an instance of DataStage on the Cloud can be deployed for their use. The customer can access the DataStage client programs on the Cloud to work with DataStage. The access would be either through the public Internet or a private connection via the SoftLayer VPN. DataStage ETL jobs running in the Cloud can access the customer’s on-premise data sources and targets using secured protocols and encryption methods. In addition, these DataStage jobs can also access cloud data sources like dashDB as well as data sources on other cloud platforms using the appropriate secured protocols.

So with DataStage hosted on the Cloud you can:

  1. Extend your ETL infrastructure: Expand your InfoSphere DataStage environment or begin transitioning into a private or public cloud with flexible deployment options and subscription pricing.
  2. Establish ad hoc environments: Extend your on-premises capacity to quickly create new environments for ad hoc development and testing or for limited duration projects.
  3. Start new projects in the cloud: Move straight to the cloud without establishing an on-premises environment. Realize faster time-to-value, reduce administration burden and use low-risk subscription pricing.

Lift your Data to Cloud

database_migrationTo stay competitive and reduce cost, several Enterprises are realizing the merits of moving their data to Cloud. Due to their economies of scale cloud storage vendors can achieve lesser cost. Also Enterprises escape the drudgery of [capacity] planning, buying, commissioning, provisioning and maintaining storage systems. Data is even protected by replication to multiple data centers which Cloud vendors provide by default. You can read this blog listing the various advantages to move data to cloud.

But now the BIG challenge is to securely migrate the terabytes of Enterprise data to Cloud. Months can be spent coming up with airtight migration plan which does not disrupt your business. And the final migration may also take a long time impacting adversely the users, applications or customers using the source database.

Innovative data migration

In short, database migration can end up being a miserable experience. IBM Bluemix Lift is a self-service, ground-to-cloud database migration offering from IBM to take care of the above listed needs. Using Bluemix Lift, database migration becomes fast, reliable and secure. Here’s what it offers:

  • Blazing fast Speed: Bluemix Lift helps accelerate data transfer by embedding the IBM Aspera technology. Aspera’s patented and highly efficient bulk data transport protocol allows Bluemix Lift to achieve transport speeds much faster than FTP and HTTP. Moving 10 TB of data can take a little over a day, depending on your network connection.
  • Zero downtime: Bluemix Lift can eliminate the downtime associated with database migrations. An efficient change capture technology tracks incremental changes to your source database and replays them to your target database. As a result, any applications using the source database can keep running uninterrupted while the database migration is in progress.
  • Secure: Any data movement across the Internet requires strong encryption so that the data is never compromised. Bluemix Lift encrypts data as it travels across the web on its way to an IBM cloud data property.
  • Easy to use: Set up the source data connection, provide credentials to the target database, verify schema compatibility with the target database engine and hit run. That’s all it takes to kick off a database migration with Bluemix Lift.
  • Reliable: The Bluemix Lift service automatically recovers from problems encountered during data extract, transport and load. If your migration is interrupted because of a drop in network connectivity, Bluemix Lift automatically resumes once connectivity returns. In other words, you can kick off a large database migration and walk away knowing that Bluemix Lift is on the job.

Speed, zero downtime, security, ease of use and reliability—these are the hallmarks of a great database migration service, and Bluemix Lift can deliver on all these benefits. Bluemix Lift gets data into a cloud database as easy as selecting Save As –> Cloud. Bluemix Lift also provides an amazing jumping-off point for new capabilities that are planned to be added in the future such as new source and target databases, enhanced automation and additional use cases. Take a look at IBM Bluemix Lift and give it a go.

IBM Bluemix Data Connect

I have been tracking the development on IBM Bluemix Data Connect quite closely. One of the reason is that I was a key developer in the one of the first few services that it launched almost two years back under the name of DataWorks. Two weeks back I attended a session on Data Connect by the architect and saw a demo. I am impressed at the way it has evolved since then. Therefore I am planning to re-visit DataWorks again, now as IBM Bluemix Data Connect. In this blog I will reconcile the role that IBM Bluemix Data Connect play in the era of cloud computing, big data and the Internet of Things.

Research from Forrester found that 68 percent of simple BI requests take weeks, months or longer for IT to fulfill due to lack of technical resources. So this entails that the enterprises must find ways to transform line of business professionals into skilled data workers, taking some of the burden off of IT. It means business users should be empowered work with data from many sources—both on premises and in the cloud—without requiring the deep technical expertise of a database administrator or data scientist.

This is where cloud services like IBM Bluemix Data Connect comes into picture. It enables both technical and non-technical business users to derive useful insights from data, with point and click access—whether it’s a few Excel sheets stored locally, or a massive database hosted in the cloud.

Data Connect is a fully managed data preparation and movement service that enables users to put data to work through a simple yet powerful cloud-based interface. The design team has taken lot of pain to design the solution in most simplistic way, so that a basic user can quickly get started with it. Data Connect empowers the business analyst to discover, cleanse, standardize, transform and move data in support of application development and analytics use cases.

Through its integration with cloud data services like IBM Watson Analytics, Data Connect is a seamless tool for preparing and moving data from on premises and off premises to an analytics cloud ecosystem where it can be quickly analyzed and visualized. Furthermore, Data Connect is backed by continuous delivery, which adds robust new features and functionality on a regular basis. Its processing engine is built on Apache Spark, the leading open source analytics project, with a large and continuously growing development community. The result is a best-of-breed solution that can keep up with the rapid pace of innovation in big data and cloud computing.

So here are highlights of IBM Bluemix Data Connect:

  • Allow technical and non-technical users to draw value from data quickly and easily.
  • Ensure data quality with simple data preparation and movement services in the cloud.
  • Integrate with leading cloud data services to create a seamless data management platform.
  • Continuous inflow of new and robust features
  • Best-of-breed ETL solution available on Bluemix  – IBMs Next-Generation Cloud App Development Platform

IA Thin Client -Your entry point into data lake

In one of my previous blogs, I was mentioning how a data lake is a set of one or more data repositories that have been created to support data discovery, analytics, ad hoc investigations, and reporting. Some Enterprises have invested money and created data lake, but are not sure how to begin utilizing their data. IA Thin Client gives the first grip on the data to the business user or analyst. Extending the capacity of Information Analyzer on Hadoop and giving a user friendly thin client, it helps the Enterprises to get to know their data. Here are few of it’s capabilities
1.    Customers can see the listing of all the data they have in there HDFS file system which they can preview and select a handful of interesting ones.

2.    They can group these interesting ones into some Workspaces say – Customer related, Employee related, Finance related and so on.

3.    IA Thin Client gives them a dashboard where they can see the overall picture of data in a particular Workspaces.Workspace

4. From Workspace you can drill into details of  of one of these interesting structured / semi structured data and run data analysis to find more details about the data. This detailed analysis gives insight about data in easily understandable way – What is the quality of data? What is format of data? Can the data be classified into one of the several known data classifications? User can also see detailed information for each of the columns of the data (format, any data quality problem observed, data type, min-max values, classification, frequent values, sampling of actual values and so on).DatasetDetails

5.    Using the tool  user can make some suggestion to the meta data of the data. For example after looking they feel that some data formats do not look correct, or the minimum value should have been something else, or the data quality problem identified can be ignored etc. Editing these also reflect on the overall data quality score.

6.  Tool allows to add a note to data or link one of the interesting data to the existing data governance catalog.

7.    Tool allows the customer to apply some existing data rule to the data and see how the data performs against it.

8.    Moreover this is done on a simple, intuitive, easy to use thin client so that a non-technical person can easily navigate through the data.

You can watch a 4 minute video to get a first hand experience of the tool.


Or see InfoSphere Information Analyzer thin client presentation that provides a comprehensive overview of the Information Analyzer thin client.

Cloud – The Horsepower Behind IoT

As promised in my last blog, in this blog I will explore the foundational block that will make IoT a reality. IoT requires huge amounts of integration. It’s not enough having components of technology; these things all have to work together.

IoT1

The cloud makes all this connection possible
For the IoT to be successful there needs to be a common way for devices to connect to each other and for building useful applications that take advantage of data from different sources. Here’s where cloud computing enters into the picture.

New cloud computing platforms like IBM Bluemix are a natural home for IoT-based applications and the data created by different devices. They’re being set up to handle the speed and volume of the data that’s being received and have the ability to ebb and flow according to demand, all the while remaining accessible anywhere from any device.

These platforms are making it easy for businesses to connect traditional enterprise-based information systems to both private and public IoT-enabled devices. This allows enterprises to quickly and economically build IoT-based sense-and-respond systems that can scale up or down based on changes in the environment and transaction level.

A one-size fits-all public cloud doesn’t work for many companies, who are looking for ways to take advantage of cloud computing without giving up their legacy IT investments. A hybrid model enables them to take advantage of a cloud environment, yet still maintain a level of control that is consistent with their business needs—a practical approach that delivers the best of both worlds.